skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Lee, Seokcheon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lee, Seokcheon (Ed.)
    Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent interdependencies while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences and those between resource availability in near‐future requests and the anticipated duration of the immediate incident request, should be considered through a look‐ahead model when making current‐stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate unmanned aerial vehicles (UAVs). The UAVs’ role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAVs’ active sensing can shorten response time of emergency vehicles and reduce uncertainties associated with the estimated incident delay impact. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026